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Abstract. Knowing a user’s plans and goals can significantly improve the effectiveness of an
interactive system. However, recognizing such goals and the user’s intended plan for achieving
them is not an easy task. Although much research has dealt with representing the knowledge
necessary for plan inference and developing strategies that hypothesize the user’s evolving plans,
a number of serious problems still impede the use of plan recognition in large-scale, real-world
applications. This paper describes the various approaches that have been taken to plan inference,
along with techniques for dealing with ambiguity, robustness, and representation of requisite
domain knowledge, and discusses areas for further research.
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1. Introduction

Suppose that someone asked you for the location of the Federal Express office and
subsequently asked about the availability of delivery outside the country. You might
reasonably infer that he or she wanted to quickly get an item to someone in another
country and intended to do this using Federal Express for delivery. In doing so,
you had inferred the goals of the other person and a portion of that person’s plan
for achieving those goals. This is often referred to as plan recognition.

Plan recognition has been used extensively in a wide variety of computer systems.
Applications include language understanding and response generation (Allen and
Perrault, 1980; Perrault and Allen, 1980; Litman and Allen, 1987; Carberry, 1990b;
Sider and Burger, 1992; Smith et al., 1995; Haller and Shapiro, 1996), speech-to-
speech translation (Alexandersson, 1995), interfaces for computer-aided design
(Goodman and Litman, 1992), UNIX help systems (Mayfield, 1992), collaborative
problem-solving (Lesh et al., 1999), and automated descriptions of image sequences
(Retz-Schmidt, 1991). The article in this special issue by Zukerman and Litman
(2001) discusses the role of plan recognition in natural language processing.
Two well-known, large-scale projects in which plan recognition plays a major role
are VERBMOBIL (Alexandersson, 1995; Alexandersson et al., 1997) (a speech-to-
speech translation system whose first application domain was appointment
scheduling) and TRAINS (Allen et al., 1996; Ferguson et al., 1996) (a spoken
dialogue system for interactive route planning) that has evolved into TRIPS
(Ferguson and Allen, 1998) (a collaborative system for solving logistics problems).
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One might ask whether plan recognition is performed by humans or is just an
artifact of use in computer systems. Research by Schmidt et al. (1978) provides evi-
dence that humans do in fact infer the plans of other agents. They performed exper-
iments in which human subjects were presented with sequences of actions by
another agent and were asked to summarize their observations and predict sub-
sequent actions. The subjects’ summarizations generally included one or more goals
attributed to the observed agent, with the agent’s actions explained in terms of
how they contributed to achieving that goal. Moreover, the summaries indicated
that the subjects had used the inferred plan to predict the agent’s subsequent actions.
This psychological research, along with an experiment by Cohen et al. (1981),
support the contention that humans engage in plan recognition and use their
hypotheses in subsequent reasoning.

Plan recognition can be characterized according to the role of the agent whose plan
is being inferred. Keyhole recognition (Cohen et al., 1981) is the recognition of an
agent’s plan through unobtrusive observation — that is, the agent does not attempt
to impact the recognition process. This kind of recognition is performed by help
systems that generate unsolicited advice (Shrager and Finn, 1982; Finin, 1983).
But might an agent attempt to perform actions that will aid or hinder the recognition
of his plan? The former situation has been actively studied in language
understanding, where the system (in order to respond appropriately to a speaker’s
utterances) must recognize the plan that the speaker intends to convey; this is
referred to as intended recognition (Cohen et al., 1981). The latter situation is rep-
resentative of adversarial settings, such as warfare, where an agent might actively
attempt to thwart recognition of his plan (Pollack, 1986b; Azarewicz et al., 1986).
However, little published research has examined situations where deception must
be taken into account.

Although early work on plan recognition offered much promise and the contri-
bution of plan recognition to robust adaptive systems has been widely recognized,
a number of serious problems have hampered the use of plan recognition in realistic
large-scale applications. This paper discusses the general plan inference paradigm,
various approaches to plan recognition, techniques developed to address issues
of plan ambiguity, robustness, and efficiency, and prospects for the future.

2. The Basic Plan Inference Process

Models of plan inference start with a set of goals that an agent might be expected to
pursue in the domain and an observed action by the agent. The plan inference system
then has the task of inferring the agent’s goal and determining how the observed
action contributes to that goal. To accomplish this, the system traditionally is pro-
vided with a set of actions that the agent might execute in the domain and a set
of recipes that encode how an agent might go about performing these actions. These
recipes constitute a plan library and include each action’s preconditions, the subgoals
that comprise performing the action, and the effects or goals of executing the action.
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The reasoning performed by the system uses this domain-dependent knowledge but
is itself largely domain-independent.

To infer the agent’s goal from the observed action, the plan inference system con-
structs a sequence of goals and actions that connect the observed action to one
of the possible domain goals. This is accomplished by chaining from actions to goals
achieved by the action, from these goals to other actions for which the goal is a
precondition or subgoal, from these actions to their goals, etc. This process is
depicted in Figure 1 where the A4; are actions and the G; are goals. The inference
path 4,,G,,A4,Gp,As,G, provides an explanation for the observed action 4, in terms
of how it contributes to the goal G,.

Perhaps the most well-known of the early plan recognition systems are those of
Robert Wilensky (Wilensky, 1978, 1983) and James Allen (Allen and Perrault, 1980;
Perrault and Allen, 1980). Wilensky’s system was developed for story understanding,
and the inference path served as an explanation for the occurrence of action A; in the
story. In Allen’s system,the plan library specified how to perform not only domain
actions but also speech acts such as Inform and Request. The action 4; was the
primitive speech act associated with an utterance and the inference path served
to explain the intentions underlying a speaker’s utterance. Allen’s system was devel-
oped to account for extra helpful information included in natural language responses
to queries and also to interpret indirect speech acts. For example,by inferring the
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Figure 1. Chaining for Plan Inference.
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plan motivating the speaker’s utterance, the system could extract obstacles
(knowledge that the speaker was missing) from the plan and provide augmented
responses that removed these identified obstacles.

Although subsequent work has built heavily on these early systems, they had many
limitations. Wilensky’s system selected the shortest inference path connecting an
observed action to an expected goal, without considering the current focus of atten-
tion in the story. Allen’s system assumed that an agent had one of a small number
of top-level goals which could be deduced from a single utterance. Carberry (1983,
1990b) built on Allen’s work by providing a model of plan recognition that inferred
an agent’s plan incrementally as the dialogue progressed. She used a tree structure
called a context model to represent the system’s current beliefs about an agent’s
goals and partial plan for accomplishing these goals. From a new utterance, her
system hypothesized a set of actions (called candidate focused actions) on which
the system believed the speaker’s attention might now be focused, used focusing
heuristics to select the candidate focused action that was most coherently related
to the existing focus of attention in the context model, and then expanded the context
model to include it. Her approach enabled plan recognition to handle extended
dialogues where the agent’s top-level goal could not be deduced at the outset.

3. Narrowing the Hypotheses

In most realistic situations, chaining produces multiple hypotheses about an agent’s
plan, some of which appear more plausible than others. Thus plan recognition
research has been forced to explore techniques that narrow the space of viable
hypotheses.

Wu (1991) contended that plan recognition systems should not just passively work
with the information provided by the user but should instead request specific infor-
mation that would help the system disambiguate the user’s plan sufficiently for
the purposes of the current interaction. He proposed a decision-theoretic approach
that took into account the utility of the different hypotheses and of potential system
queries to identify the most effective query. Although Wu did not implement his
proposal, the basic concept was adopted by van Beek and Cohen (1991). They devel-
oped a system that critiqued the multiple hypotheses to identify faults in the inferred
plans and entered into a clarification subdialogue when the choice of plan affected
the system’s response — i.e., when the detected faults differed. Criteria for queries
in the clarification subdialogue included coherence (resulting in a top-down
approach), minimization of the dialogue, and minimization of the length of each
question.

However, unnecessary questions can disrupt the dialogue and appear
unintelligent. Heuristics that cull the intuitively less plausible hypotheses have
played a prominent role in most plan recognition systems. Many of these heuristics
have been based on rationality or coherency. For example, Allen and Perrault’s
model of intended recognition (Perrault and Allen, 1980) downgraded a hypothesis
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about an agent’s partial plan if the hypothesis was the result of one of several alterna-
tive inferences, since the speaker could not have intended the hearer to recognize
which inference to choose. For example, if an agent wanted to know if a specified
proposition was true, then the hearer might infer that the agent has a plan in which
the proposition must hold or alternatively a plan in which the proposition must
be false; in either case, the agent is checking to see whether the required conditions
on the proposition are satisfied. Litman (1986) preferred plans that represented
the most coherent discourse moves. Raskutti and Zukerman (1991) devised a
probabilistic approach for assessing the likelihood of competing hypotheses during
intended recognition. Their system used domain-independent heuristics to distribute
probabilities among the possible domain plans inferred solely from the user’s new
input! and to estimate the probability of different relations between these plans
and the potential plans inferred from the preceding dialogue. They then used Bayes
rule to compute the probability of each new competing hypothesis based on the
above probabilities and the probability of each previous hypothesis. These
probabilities were subsequently revised based on an information-theoretic measure
that estimated the extent to which a hypothesis was specified well-enough for
the intended actions to be taken; the underlying motivation was that a speaker would
provide sufficient information for the listener to carry out her role in the interaction.

Domain information can also contribute to the intuitive plausibility of alternative
hypotheses about the user’s plan. For example, the speaker who asks about the
location of the Federal Express office most likely wants to send a package, but other
alternatives exist, such as applying for a job or even robbing the office. Carberry
(1990a) devised a strategy, motivated by psychological studies of human inference
and decision-making, that could sanction rational default inferences about the user’s
plan but defer unwarranted conclusions until further evidence was accumulated. It
was implemented using Dempster—Shafer theory (Shafer, 1976) to represent the
support that individual pieces of evidence give to alternative hypotheses and to com-
pute the combined support offered by multiple pieces of evidence.

The above efforts are concerned with methodologies that are applicable to all
users. However, knowledge about the individual user or user group can impact
the plausibility of competing hypotheses. Gertner (Gertner and Weber, 1996;
Gertner, 1997) developed a system for inferring physician’s plans from their actions
during emergency center trauma care. Since the physician was presumed to be
an expert in the domain and thus to be more likely to pursue suboptimal plans rather
than incorrect ones, her system included what she termed a bias toward hypotheses
that included fewer goals deemed incorrect by the system’s expert reasoning.
One can envision how such biases might be devised for other user groups. For
example, a tutoring system that is inferring a fifth-grader’s plan for solving
long-division problems from his solutions to several sample problems might have

! Raskutti and Zukerman take into account the number of alternative propositions that might be
inferred and the modality of the user’s utterance.
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a bias toward hypotheses about the student’s plan that do not involve simple sub-
traction errors, since students at this level presumably have mastered subtraction.

Plan recognition systems might perform even better if they could be adapted to the
individual agent whose plan is being inferred. Ardisonno and Sestero (1996) used
beliefs about the user, obtained from stereotypes and heuristic analysis of the user’s
previous actions, to help identify implausible plans. Bauer (1994, 1995, 1996)
was concerned with situations (such as handling email) in which users typically
repeated the same pattern of actions when presented with a previously encountered
goal. He viewed these repeated patterns as preferences, and used Dempster-Shafer
theory to represent preferences deduced from previous activity (Bauer, 1995, 1996)
and to develop a probabilistic mechanism (Bauer, 1994) for choosing among com-
peting hypotheses given such user-specific evidence. Bauer’s work was specifically
designed for domains where repeated patterns of actions can be observed; it will
be interesting to explore how a mechanism such as Bauer’s might be extended
to preferences that do not represent repeated patterns of actions, such as the prefer-
ences recognized by Elzer (Elzer et al., 1994; Carberry et al., 1999) from a collab-
orative planning dialogue.

Lesh (1997) furthered this user-tailored approach by investigating how obser-
vation of an agent’s behavior might be used for more general adaptation of the plan
recognition process. Lesh distinguished between potential goals (goals that might
represent the user’s primary intention and which the system might want to recognize)
and background goals (spurious goals that are not related to the user’s main goal).
Adding or removing elements in the set of potential goals increased the efficiency
of the recognition system by adapting it so that it considered only goals that the
particular user tended to pursue. Adding or removing elements in the set of back-
ground goals adapted the recognition system to the particular user by enabling
it to filter out spurious actions that the user tended to perform even though they
were irrelevant to the task. Lesh’s methodology employed hill climbing to select
from among the set of adaptations that were appropriate based on an agent’s
observed behavior over time.

The above efforts have considered a wide variety of mechanisms for narrowing the
space of viable hypotheses about an agent’s plan. The heuristics based on rationality
on the part of the planning agent are probably appropriate for any system. But what
about the large number of other heuristics and methods that have been explored?
Unfortunately, as with much of the research on plan recognition, there has been
little evaluation of the individual heuristics to determine their effectiveness. Bauer
demonstrated that his adaptive mechanism improved performance of plan recog-
nition in the domain of electronic mail. Lesh’s experiments (Lesh, 1997) show that
an adaptive system can improve performance. However, his experimental data
was provided by other planning systems or simulations rather than observations
of humans in realistic scenarios. Thus although the mechanisms employed in the
various systems all appear plausible, evaluation studies are needed to identify their
impact on plan recognition in large scale real-world situations.
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4. Other Models of Plan Recognition

Most plan recognition systems have followed the basic model outlined in Section 2.
However, other formalisms have been proposed for dealing with the uncertainty
inherent in plan inference, most notably formal argumentation models and
approaches based on probabilistic reasoning.

Several researchers have captured plan recognition in a formal model of argumen-
tation (Konolige and Pollack, 1989) or abduction (Appelt and Pollack, 1992; Waern,
1994). Appelt and Pollock (1992) used weighted abduction in which weights were
assigned to the premises of each rule. The cost of proving a conclusion C was
the sum of the costs of proving the premises in a rule whose consequent was C.
The cost associated with a premise depended on whether it was true, proven from
other rules, or assumed; in the latter case, the premise’s cost was affected by the
weight assigned to the premise. The best hypothesis about the agent’s plan was
the one given by the lowest cost proof. As noted by Appelt and Pollock, weighted
abduction captures domain-dependent knowledge about the likelihood that a prem-
ise is true.

Approaches based on formal models of probability have gained increased promi-
nence during the past decade. Section 3 discusses Bauer’s use of Dempster—Shafer
theory for rating hypotheses about an agent’s plan. One of the arguments given
by proponents of Dempster—Shafer as a method for reasoning under uncertainty
is that it distinguishes lack of evidence for a proposition from evidence against
the proposition. Other researchers favor Bayesian reasoning, generally captured
in Bayesian belief networks (Pearl, 1988). Although Raskutti and Zukerman used
Bayes rule to compute the final probabilities of competing hypotheses (see
Section 3), their system implemented a heuristic approach.

Charniak and Goldman (1991, 1993) constructed the first Bayesian plan inference
system. Their system used marker passing (Charniak, 1986) (a form of spreading
activation in a network of nodes and links) to identify potential explanations for
observed actions and to identify nodes for insertion into a Bayesian belief network.
In a Bayesian belief network, nodes represent random variables; arcs between nodes
represent causal dependencies, captured by conditional probability distributions
that for each value of the parent node give the probability of each of the various
possible values of the child node. When used for plan inference, the random variables
are propositions, the root nodes represent hypotheses about an agent’s plan, and the
probability assigned to a node represents the likelihood of a proposition given the
evidence. Bayes rule is used to compute the probability of each proposition from
the causal evidence provided by its parents and the diagnostic evidence provided
by its children. As new evidence is added to the network, the probabilities at each
node are recomputed, thereby propagating the evidence through the nodes.

Charniak and Goldman applied their plan recognition system to the problem of
understanding a character’s actions in a story. As with any system based on Bayesian
networks, it required a large number of prior and conditional probabilities. Such
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systems are most appropriate for domains where these probabilities can be reliably
estimated, and where the causal influence among nodes can be reliably determined.
It is unclear that story understanding has these attributes. In addition, it appears
that Charniak and Goldman’s system is not sensitive to the order in which actions
are observed, something that should affect plan recognition in longer stories.

Albrecht et al. (1997, 1998) constructed a plan inference system based on Dynamic
Belief Networks. Dynamic Belief Networks (Dean and Wellman, 1991) capture the
influence of temporal aspects by using multiple nodes to represent the status of
a variable at different instances of time. Their plan inference system was used to
infer an agent’s plan during an adventure game. The joint probability distributions
were based on data collected from actual games. With the ability to assign reliable
probabilities based on collected observations, this was a good domain in which
to investigate probabilistic plan inference. However, the designers were still faced
with the problem of identifying the appropriate network structure. They investigated
four networks of different complexity, and provided an extensive evaluation of the
impact of the different networks on the quality of plan recognition.

The results of Albrecht et al. suggest that Dynamic Belief Networks offer a
promising approach to keyhole plan recognition in situations where sufficient train-
ing data can be collected and the causal structure of the network clearly identified.
For other applications of Dynamic Belief Networks in plan recognition, see
Pynadath and Wellman (1995) and Forbes et al. (1995).

5. Extending Plan Recognition to Non-Domain Plans

Most plan inference research has been concerned with domain actions and the
domain goals to which they contribute. However, in many contexts a system will
be severely hampered unless it can reason about a wider variety of goal types.
For example, Elzer (1995) argues that many utterances in a collaborative planning
dialogue do not refer to specific domain goals but rather to how the agents should
approach solving the problem. Unless a system can recognize problem-solving strat-
egies and their relationship to the domain plan under construction, the system will be
unable to achieve its full potential as a collaborative partner. Similarly, a natural
language dialogue system must be able to recognize communicative goals such
as expressing doubt at a proposition conveyed by another agent. For example, a
Surface-negative question of the form “Isn’t PROP’’, where PROP is a proposition,
can be simply a request for verification or can be an expression of doubt at some
other proposition (Lambert and Carberry, 1992; Carberry and Lambert, 1999).
If PROP is in fact true and the utterance is merely seeking verification, then it
is sufficient to affirm the proposition’s truth. However, if the utterance is intended
to express doubt, then an appropriate response must address the implied relationship
between the queried proposition and the proposition that is implicitly being doubted.

Wilensky (1981, 1983) was the first to address the importance of non-domain goals
in plan inference. He investigated the recognition of metaplans (plans about plans),
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such as a metaplan for resolving conflict between two competing goals. Since often a
character’s actions in a story make sense only in terms of a metagoal and the
character’s plan for pursuing it, recognition of metaplans is essential for story
understanding. In the area of language understanding, Litman and Allen (1987)
introduced the notion of discourse metaplans to capture how a speaker might extend,
continue, or modify the plan being pursued during a dialogue. As with Wilensky’s
metaplans, Litman and Allen’s metaplans might be termed problem-solving plans
since they reflected an agent’s plan construction process. Litman and Allen devel-
oped a plan inference system that represented and reasoned about discourse
metaplans and domain plans in a unified framework. This allowed them to recognize
goals to clarify or correct an existing plan. Ramshaw (1989, 1994) expanded on
Litman’s work and developed a system for recognizing a rich set of problem-solving
goals.

However, recognizing domain, problem-solving, and communicative goals during
an extended interaction is not a simple task. As shown by Lambert and Carberry
(1991), each kind of goal and plan must be recognized incrementally. For example,
consider the following set of utterances:

The City of <xxx> is considering filing for bankruptcy.
One of your mutual funds owns <xxx> bonds.

Although neither utterance by itself constitutes a warning,a plan inference system
must be able to recognize the warning from the two utterances together. Thus
Lambert and Carberry developed a plan inference system that recognized each kind
of plan (domain, problem-solving, and communicative) incrementally as the
dialogue progressed. Focusing heuristics appropriate to each type of plan were used
to capture expectations about potential shifts in attention. Rosé et al. present a sys-
tem for handling more complex focus shifts (Rosé et al., 1995).

Although research has shown the necessity for recognizing more than just domain
goals, relatively little effort has been devoted to incorporating such reasoning into
plan recognition systems. Thus it remains a fruitful area for further research.

6. Robustness

Plan recognition systems are plagued by what might be termed noise in the data; this
noise hampers the system’s ability to accurately identify the agent’s plan. Recall that
plan inference systems take three inputs: (1) a plan library capturing the system’s
knowledge about potential goals and means of accomplishing them; (2) input from
the agent whose plan is being recognized, and (3) whatever partial plan has already
been inferred for the agent. Thus far we have made two assumptions: (1) the new
input can be associated with one or more recipes in the plan library, and (2) the
action/goal captured by this recipe and the partial plan already inferred for the agent
can be meshed together in a manner that reflects the agent’s actual intentions.
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But disruptions or deficiencies in each of the three inputs can cause the system to infer
anincorrect plan or fail to infer any plan at all. In this section, we examine how this can
occur and research that has attempted to address issues of robustness.

In addition to extraneous actions that have nothing to do with the agent’s
intentions in the domain (Albrecht et al., 1998), noise in the agent’s input to the
system can take the form of actions that are intended to advance the agent’s goals
but which are inappropriate (Pollack, 1987). Most plan inference systems assume
that the user’s knowledge is a subset of the system’s and fail to account for the
presence of misconceptions about how to achieve domain goals. Pollack (1986a)
was the first to explicitly ascribe beliefs to an agent during plan inference. Although
her system could ascribe the system’s beliefs about recipes for achieving goals, it
could also ascribe principled variations of these recipes. This allowed Pollack to
infer ill-formed plans and thereby account for queries about actions that were
inappropriate to a correct means of achieving a goal. Note that Pollack’s mechanism
differed from the inclusion of buggy plans (Brown and Burton, 1978), since the
incorrect plans were not encoded in the system’s knowledge base but were derived
by applying principled mechanisms for hypothesizing variations in the system’s
recipes. Thus it theoretically is a much more powerful approach to plan recognition
in the face of potential misconceptions. However, Pollack only experimented with
very simple variations, such as the omission of a constraint; extending her work
to more complex variations requires extensive research. Calistri-Yeh (1991) pro-
vided a classification of plan-based misconceptions that encompassed most of
the categories identified by other researchers (Pollack, 1986a; Quilici et al., 1988;
van Beek, 1987). He presented a plan inference system that used estimated
probabilities to guide the search for an agent’s intentions. Formulas attached to
each class of misconception were used to estimate the probability of a particular
kind of misconception based on the plan under consideration. Application of his
system to several corpora supported this approach.

Besides misconceptions reflected in the user’s input, noise can appear as an
erroneous hypothesis about an agent’s partially constructed plan. Since plan
inference systems attempt to mesh together the action derived from the agent’s input
with the system’s current hypothesis about the agent’s plan, errors in the existing
hypothesis will impede plan recognition. Eller and Carberry (1992) were the first
to consider how the system’s inference mechanisms might lead to incorrect beliefs
about an agent’s plan and thereby affect subsequent plan recognition. They proposed
an approach to dealing with ill-formedness in which meta-rules relaxed the plan
inference process and enabled the consideration of less well-formed hypotheses.
The metarules could not only propose hypotheses reflecting possible misconceptions
on the part of the agent but could also propose principled revisions of the system’s
existing beliefs about the agent’s partial plan. However, as with Pollack’s work, their
implementation only suggested very simple variations.

In addition, plan recognition is hampered if the system’s plan library does not
capture all means of achieving a goal. Unfortunately, it is unrealistic to expect that
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the plan library will always be complete. Thus systems must also be able to reason in
a principled manner about possible novel correct plans (correct plans that are not
captured in the plan library) that an agent is pursuing. This is a very difficult problem
and has received little attention in plan inference research. Cohen et al. (Cohen et al.,
1991; Spencer et al., 1994) present a mechanism for updating the system’s plan
library with novel recipes, but they do not address the inference of novel plans.

Although most plan inference systems acknowledge the need to address the above
problems, few actually do so. This is largely due to the problem of controlling
inferencing once misconceptions, erroneous system beliefs, and novel plans must
be considered. The problem of revising the system’s beliefs may be alleviated with
the advent of probabilistic approaches to plan recognition, since they construct mul-
tiple different hypotheses with associated probabilities. However,such systems still
need to incorporate mechanisms for dealing with user misconceptions and novel
plans and for revising system beliefs to account for misconceptions or novel plans
that originally went undetected.

In addition to noise in the input, robustness is affected if the agent is deliberately
attempting to thwart the plan inference process. Although Azarewicz et al. (1986;
1989) investigated plan recognition in an adversarial domain, they expanded their
system’s knowledge base to encode plans that they expected an adversary might
pursue and did not propose principled mechanisms for hypothesizing how an agent
might attempt to conceal his actual plan with misleading actions.

7. Acquisition and Representation of Knowledge

As discussed earlier, plan recognition systems require a knowledge base that encodes
the system’s beliefs about how goals can be achieved. The earliest plan libraries
encoded recipes as collections of preconditions, constraints, subgoals, and effects.
Kautz and Allen (1986) differentiated between specialization and decomposition
recipes, where specialization captured alternative ways of performing a more general
action and decomposition specified the subgoals that comprised an action. For
example,the actions FIy(X) and Drive(X) might be represented in the knowledge
base as specializations of the action Travel-to(X).The plan hierarchy would capture
subgoals that are part of all specializations of an action in the decomposition of
that action,while the decomposition of a specialization of an action would capture
subgoals that are specific to that specialization. More recently, researchers have
developed representational systems based on description logic (Weida and Litman,
1992a, 1992b; Di Eugenio and Webber, 1992; Weida, 1995; Di Eugenio, 1995).
For example, Weida and Litman (Weida and Litman, 1992a; Weida, 1995) devel-
oped an automatic classification system that incorporated temporal constraints.
Their system could organize an initial knowledge base based on subsumption, could
appropriately update the taxonomy with new or modified plans, and could efficiently
retrieve plans from the taxonomy based on specified patterns. Such representation
and retrieval systems are essential for efficient plan inference.
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Unfortunately, constructing a plan library requires much human effort. Recently,
attention has been given to how machine learning might alleviate the problem of
building the library. As noted in Section 3, Lesh proposed that the plan library
be adapted to the individual user. Lesh and Etzioni (1996) presented a method
for automatically constructing the plan library using goal and plan biases;
nonetheless, the basic knowledge must still be encoded beforehand. Mooney (1990)
added plan schemata to a plan library; however, the plan must first be recognized
by plan inference techniques, and the insertion into the plan library only provided
for more efficient recognition if the plan was encountered again.

Bauer (1998) presented a strategy for learning plan decompositions from a train-
ing set of goals and associated action sequences. Since often there are alternative
ways of achieving a goal, he used a similarity metric to identify which action
sequences represented the same basic plan. Given such a similar set of action
sequences, he then constructed a plan decomposition that eliminated unnecessary
actions, temporal orderings, and structural relationships, and that replaced each
step that appeared in every action sequence with a more general action that sub-
sumed the individual steps. Although Bauer’s approach can construct
decompositions even without domain knowledge such as an object taxonomy,
the plans become very general and unrestricted. And in many cases, developing
the appropriate object taxonomy is closely related to constructing the plan library.
Although a very nice step forward, this work seems most appropriate for domains
where data can be easily collected and where goals are achieved by a small set
of alternatives.

In the case of Bayesian belief nets for plan inference, the structure of the network
has been determined a priori by the system designers, and in many cases involves
simplifying assumptions to reduce complexity. Research on learning the structure
of a belief net is promising, but it is unclear how applicable this might be for
large-scale plan recognition with complex influences among the actions and how
extensive a training set will be required. The article in this special issue by Zukerman
and Albrecht (2001) discusses recent research on predictive statistical techniques,
and the article by Webb et al. (2001) discusses the role of machine learning in user
modeling.

8. Other Challenges for the Future

Although formal plan inference techniques have been used in many applications,
they have received relatively little attention in intelligent tutoring systems. As noted
by Greer and Koehn (1995), the robustness problems discussed in Section 6 are
exacerbated when inferring student problem-solving plans in tutoring systems, since
the student is by definition incompetent in the domain and such users tend to have
very novel ways of erring. Thus this domain is an excellent one for investigating
strategies for increasing the robustness of plan inference. The article in this special
issue by Kay (2001) discusses user modeling in intelligent tutoring systems.



TECHNIQUES FOR PLAN RECOGNITION 43

Recent research has begun to address the problem of inferring plans involving
several agents (Castelfranchi and Falcone, 1995; Lochbaum, 1998; Devaney and
Ram, 1998). Although many of the basic issues remain the same, multi-agent plan
recognition must identify which agents are contributing to a particular plan and
how their activities are interwoven. Moreover, in the case of collaborative planning
dialogues, more complex focusing heuristics must be devised to capture the focus
of attention of the individual agents and allow their utterances to be correctly inter-
preted.

Plan inference research has concentrated on demonstrating how new techniques
work on a small set of problems in a limited domain. One of the major problems
is scaling plan recognition techniques to larger domains with thousands of goals
and means of achieving them. Lesh and Etzioni (1996) proposed that version spaces
be used to represent the space of possible hypotheses for efficient processing in
large-scale plan recognition, and they presented a plan recognition algorithm based
on version spaces that worked well for a certain class of goals. However, their system
was only applied to simulated test examples. Further work is needed on developing
scalable recognition algorithms that can address real-world plan recognition
problems.

9. Summary

Research suggests that humans perform plan inference and that plan inference con-
tributes to much of the intelligent processing done by humans. The contributions
of plan inference to intelligent performance by computers has been demonstrated
in a wide variety of applications. Unfortunately, a number of serious problems still
impede the use of plan recognition in large-scale real-world situations. The most
serious are (1) system robustness in the face of noise in the input; (2) effective dis-
crimination among competing hypotheses, and (3) recognition algorithms that scale
up to large domains. With the advent of large corpora of data, it should soon be
possible to evaluate plan recognition techniques in real-world scenarios with
real-world data.
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